【导读】2023年浙江专升本高数的三大基础运算!相信很多小伙伴都是比较好奇的,快跟着浙江专升本网一起来看看吧!
数学肯定是需要计算的,而高等数学的计算基石就是其基本的三大计算:求极限、求导、求积分。
(1)极限计算
极限计算经常出没于各类题型,除了综合题、证明题中较少出现,基本都有它的身影,
在极限计算中常考的有以下几种:
代入法直接求极限(就是把数直接代进去),无穷小替换求极限(利用等价无穷小来替换化简),抓大头求极限(分式类型极限,分子分母同时抓大头),重要极限(一个公式,真的很重要),洛必达求极限(需要分式上下同时求导)。
极限的计算主要注意两点,一个是根据极限特点选择正确的方法,一是这些方法都是怎么操作的需要记忆。
(2)求导计算
求导计算,部分同学在高中已经接触过,是在高等数学中存在感很强的计算。
在求导计算中常考的有以下几种:
求导的四则运算(就是加减乘除的导,乘除的导有对应的公式),复合函数求导(理解较难运算简单,只要会公式就不怕),隐函数求导(跟着步骤走准没错)。
求导计算的灵魂在于求导公式的记忆,其次各类函数的求导方法也不相同,需要牢记。
(3)积分计算
积分计算是比较难的计算之一,它是求导计算的逆过程,很多事情顺着容易逆着就很难了,例如由简到奢和由奢到简。
在积分计算中常考的有以下几种:
凑微分法积分(其实就是复合函数求导的逆过程,但是很难理解),根式换元法积分(跟着步骤走准没错),分部积分法(记好公式就很简单,公式也很简单)
积分计算的灵魂依然是公式的记忆,但是方法的选择也是一大难点,有的时候选择比能力更重要。
以上就是“2023年浙江专升本高数的三大基础运算!”的全部内容,希望大家能够取得自己心仪的成绩。如果大家想要知道更多关于浙江专升本相关资讯,如浙江专升本常见问题,考试大纲,报考指南,考试科目,政策公告,备考资料。敬请关注浙江专升本。
浙江专升本声明
(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。
(二)本网站在文章内容来源出处标注为其他平台的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请于我们联系,我们会及时处理。
文章来源于网络,如有侵权,请联系删除